a2 United States Patent

Vick et al.

US009304748B2

US 9,304,748 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHOD FOR CONTROLLING INLINING IN
A CODE GENERATOR

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventors: Christopher A. Vick, San Jose, CA
(US); Andres Valencia, San Jose, CA
(US)

Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 288 days.

Appl. No.: 14/014,571

Filed: Aug. 30,2013

Prior Publication Data
US 2015/0046912 Al Feb. 12,2015

Related U.S. Application Data

Provisional application No. 61/863,341, filed on Aug.
7,2013.

Int. Cl1.

GO6F 9/45 (2006.01)

GO6F 9/455 (2006.01)

GO6F 11/34 (2006.01)

U.S. CL

CPC GO6F 8/443 (2013.01); GOGF 8/4443

(2013.01); GOGF 9/45516 (2013.01); GOGF
9745504 (2013.01); GOGF 11/3466 (2013.01)
Field of Classification Search
CPC GOGF 8/443; GOGF 8/445; GOGF 8/447;
GOGF 11/3466; GOGF 9/45504; GOGF 9/45516
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,740,443 A 4/1998 Carini
6,195,793 Bl 2/2001 Schmidt
6,983,459 Bl 1/2006 Prosser et al.
6,986,130 Bl 1/2006 Boucher
7,386,686 B2* 6/2008 Wuetal.coeevvennne. 711/147
8,423,980 B1* 4/2013 Ramasamy etal. 717/140
(Continued)
OTHER PUBLICATIONS

Alpern et al., “Some New Approaches to Partial Inlining”, 2012
ACM, VMIL’12, Oct. 21, 2012, pp. 39-47; <http://dl.acm.org/re-
sults.cfm?query=inline+throttling&Go x=0&Go.y=0>*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Ben C Wang

(74) Attorney, Agent, or Firm — The Marbury Law Group,
PLLC

(57) ABSTRACT

The various aspects leverage the novel observation that the
number of call sites in code is directly correlated with the
code’s compile time and provide methods implemented by a
compiler operating on a computing device (e.g., a smart-
phone) for performing inline throttling based on a projected
number of call sites in the code that would exist after per-
forming inline expansion. The various aspects enable the
compiler to improve the performance of the generated code
by aggressive inlining while carefully managing increases in
compile time, thereby decreasing the power required to com-
pile the code while increasing performance of the computing
device. Thus, by inlining enough call sites to reduce the costs
of handling calls while accounting for the costs of inlining,
the various aspects provide for an effective balance of short
compile times and effective code performance.

40 Claims, 7 Drawing Sheets

main(}{
double num1 = 9;

double num_square =

300

- 304 &

-~ 302

print_num{double x){

l

i

! .
print(str);

! gt

: !

return;

|

I
String sér =onvert_double_toString(x]) |

¥

|

main{}{
double numl = 9;

double num_square = num*numl;

- 322

String ser
print(str);

«Tonvert_double_toString(num_square

7
318 -

US 9,304,748 B2
Page 2

(56)

8,789,032

9,009,691
2004/0040029
2005/0071834
2005/0097528
2005/0097533
2006/0190934
2007/0033578
2011/0321059
2012/0054725
2012/0096447
2012/0159461
2014/0189661
2015/0046912

References Cited

U.S. PATENT DOCUMENTS

Bl* 7/2014 Lietal. ...

B1* 4/2015 Chenetal. ...
Al* 2/2004 Debbabi et al

Al* 3/2005 Gatesetal.

Al 5/2005 Chakrabarti et al.
Al* 5/2005 Chakrabarti et al.
Al* 8/2006 Kielstraetal.

Al* 2/2007 Armoldetal.

Al 12/2011 Yildiz etal.

Al* 3/2012 Inglisetal. ...

Al* 4/2012 Inglis et al.
Al* 6/2012 Nakaike ...

Al* 7/2014 Wuerthinger et al.
Al* 2/2015 Vicketal. ...

...... 717/154
... 717/151 jsp?tp=&arnumber=5936700>*
... 719/315
...... 717/153

OTHER PUBLICATIONS
Leeetal., “Aggressive Function Splitting for Partial Inlining”, IEEE,

Feb. 12, 2011, pp. 81-86; <http://iceexplore.icee.org/stamp/stamp.

Zhao et al., “To Inline or Not to Inline? Enhanced Inlining Deci-
sions”, Springer-Verlag Berlin Heidelberg Oct. 2003, LCPC 2003,

...... 717/144 LNCS 2958, pp. 405-419; <http://link.springer.com/chapter/10.
... 717/148
...... 717/130

1007%2F978-3-540-24644-2_ 26#page-1>.*
International Search Report and Written Opinion—PCT/US2014/

~~~~~~ 717/148 049757—ISA/EPO—Oct. 10, 2014.
... 717/148

... 717/139

... 717/139

...... 717/152 * cited by examiner



U.S. Patent Apr. 5, 2016 Sheet 1 of 7 US 9,304,748 B2

—102
- Source Code | 100
-1 o
—104 _—106
Operating System Hardware
— 112
Compiler Memory
N 108
I . — 114
Software -
Processor
/
110 '
FIG. 1

(Prior Art)



U.S. Patent Apr. 5, 2016 Sheet 2 of 7 US 9,304,748 B2

ZOOZA

204
Obtain source code for compiling -

'

Generate an intermediate representation of the | — 206
source code

!

Optimize the intermediate representation

'

Generate machine code from the optimized | — 210
intermediate representation

!

Output the machine code

FIG. 2

(Prior Art)



U.S. Patent Apr. 5, 2016 Sheet 3 of 7 US 9,304,748 B2

300

main}{

ouble B /
double mumi = 4, vy 303

double num_sguare ={3

} - : 308 Mot inlined

S
5 print_num{doubie x}{
! String sir =
: print{str);
] retuin;
b e e e 4
main}{
double mumi = §;
double num_square = num¥*numi; 322
String str »@hie}@&ring(@
print(str);
318 —
; inlin

FIG. 3



U.S. Patent Apr. 5, 2016 Sheet 4 of 7 US 9,304,748 B2

Begin inline optimization K

Set call-site counter

Y \

—

\
|
|
|
|
. 406 |
Select code for scanning i |
|
|
53 408 :
call site detected in the scanned
code? :
Yes [
— 409 |
Select the call site |
|
|
Is the — 410 No |
selected call site eligible for ~ |
inlining? I
|
Yes [
, , 412 :
Inline the selected call site |
|
- 4 — 414 y 486 ||
Add the number of nested function calls in the Add one to the call-site :
inlined call site’s called function to the call-site counter I
counter J I
|
|
|
|
|
|
)

— 419
Perform inline optimization again? —m— = — ——— — ——— — — —

— -—

-
_— —
— —

— —

yNo

End inline optimization

420

FIG. 4



U.S. Patent Apr. 5, 2016 Sheet 5 of 7 US 9,304,748 B2

~410a
)
( Determination block 408 = “Yes” ) A
Determine the number of nested function calls in| — 502
the call site’s called function
No ’,,”Is’the number™ ~ — (503
~ —Z_ of nested function calls in the called ==
I T =~ _function>1_ =~
I —
I
I
I Yes
I
| counter > a call-site
| reshold?
Sm——_——————— No
_— 506 508

Determine that the call site is not
eligible for inlining

( Go to block 412 ) ( Go to block 416 )

FIG.5

Determine that the call site is eligible for inlining




U.S. Patent Apr. 5, 2016 Sheet 6 of 7

| Begin inline optimization |

Is a
call site detected in the scanned
code?

Determine the number of nested function calls inthe | 602
detected call site’s called function

418

s there more code to scan?

No
Set call-site counter equal to the number of detected | -— 603
call sites

L]

Rank the call sites based on the number of nested |~ 604
function calls in each call site’s called function

US 9,304,748 B2
600
M
_______ ~N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 !

- =< Yes |

~.— Scan the code againT_ =~
- o —

1 No 420

Select the lowest ranked call site from the group of | 606
call sites
- ]
’,”JS\\\\ — 608
0 _ - the number of <~
¢ —=__ _nested function calls in the selected call "__~=-
| ~ ~— . _site’s called function __ — —
|
| ; _— 609
| _aprojected < Yes
net change in the number of call sites
| the call-site counter > a call-sj
I threshold?
N e e e e e ——
No
Inline the selected call site — 42
Adjust the call-site counter by the net change inthe |~ 610
number of call sites
— 611
Is there an unselected call site? No
— 612
Select the call site with the next lowest rank
L ) |

End inline optimization

FIG. 6



U.S. Patent Apr. 5, 2016 Sheet 7 of 7 US 9,304,748 B2

700




US 9,304,748 B2

1
METHOD FOR CONTROLLING INLINING IN
A CODE GENERATOR

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Application No. 61/863,341 entitled “Method for
Controlling Inlining in a Code Generator” filed Aug. 7, 2013,
the entire contents of which are hereby incorporated by ref-
erence.

BACKGROUND

Generally, a compiler operating on a computing device,
such as a smart phone or personal computer, may perform
inline expansion (i.e., inlining) to optimize code. To speed up
execution, a compiler may “inline” code by replacing a call
site (i.e., the portion of code making a method or function
call) with the code body of the called method or function.
Inlining code at call sites can significantly improve perfor-
mance at runtime by reducing execution overhead and time
and memory usage and by enabling other optimization oppor-
tunities. For example, inlining a call site may avoid overhead
associated with making a method or function call, including
having to save variables into registers or random access
memory and then having to restore those saved variables after
the called method is performed. Inlining code may also
remove other costs of function calls and return instructions,
such as prologue and epilogue code.

However, inlining, especially excessive or unthrottled
inlining, may increase the time that a compiler must spend to
compile the code (i.e., the compile time). Code compilers
expend a great deal of compiler time managing register allo-
cation, which is the most time intensive portion of code gen-
eration/compiling. Inlining may increase compile time by
adding numerous variables to the code from the called func-
tions. For example, a code compiler may spend a significant
amount of time performing register matching when inlining
results in code that requires more registers than are available
on the underlying computing device.

While such expenditures of time is not an issue with oft-
line compilers, such time, memory, and processing expendi-
tures are significant for compilers that execute when an appli-
cation is started (i.e., compile at the time of execution). As the
use of smart phones, tablets, and other mobile computing
devices that depend on batteries continues to rise, expending
battery life has become an increasingly important design
consideration. A computing device’s power expenditure and
code’s compile time are strongly correlated. Thus, longer
compile times caused by excessive inlining may use signifi-
cantamounts of battery power, thereby limiting battery life on
mobile devices.

Currently, there are several techniques for selectively
determining when to throttle inlining of a method or function
during compiling. For example, one solution (i.e., a “greedy”
inlining algorithm) defines a threshold of how much of the
code (e.g., how many bytecodes) may be inlined, and the
compiler inlines as much of the code as it can until the thresh-
old is exceeded. Another technique known as frequency- or
temperature-based inlining determines the methods or func-
tions that are called with the highest frequency, and the com-
piler inlines those methods or functions until it has reached a
certain threshold, such as a number of bytecodes. In the
frequency-based inlining algorithm, those methods or func-
tions that are not used frequently are not inlined.

While current methods of inlining provide some degree of
code optimization, these strategies are typically implemented

10

20

30

40

45

65

2

on computing devices that do not rely on battery power (e.g.,
a PC) and are not designed to reduce compile times.

SUMMARY

The various aspects leverage the novel observation that the
number of call sites in code may directly correlate with the
code’s compile time. Thus, to achieve an effective balance of
short compile times and effective code performance, the vari-
ous aspects provide methods implemented by a compiler
operating on a computing device (e.g., a smartphone) for
performing inline throttling based on the total projected num-
ber of call sites in the code that would exist after performing
inline expansion. The various aspects enable the compiler to
improve the performance of the generated code by aggressive
inlining while managing increases in compile time, thereby
decreasing the power required to compile the code while
increasing performance of the computing device and the over-
all user experience.

The various aspects include a method of throttling inline
optimization of code by a compiler operating on a computing
device by selecting a call site detected during a scan of the
code; determining a number of nested function calls in a
called function of the call site; determining whether the call
site is eligible for inlining based at least on the number of
nested function calls in the called function and a call-site
counter; and inlining the call site in response to determining
that the call site is eligible for inlining. In an aspect, the code
may be bytecode. In another aspect, determining whether the
call site is eligible for inlining may be based only on a sum of
the call-site counter and one of the number of nested function
calls and a net change in a number of call sites. In another
aspect, the method may include adding the number of nested
function calls to the call-site counter after inlining the call site
and adding one to the call-site counter in response to deter-
mining that the call site is ineligible for inlining.

Inanaspect, determining whether the call site is eligible for
inlining may include determining whether a sum of the num-
ber of nested function calls and the call-site counter exceeds
a call-site threshold and determining that the call site is eli-
gible for inlining in response to determining that the sum does
not exceed the call-site threshold. In another aspect, deter-
mining whether the call site is eligible for inlining may
include determining whether the number of nested function
calls is greater than one and determining that the call site is
eligible for inlining in response to determining that the num-
ber of nested function calls is not greater than one. In yet
another aspect, determining whether the call site is eligible
for inlining may not be based on any of whether the call site
is on an execution path, a depth of nested function calls in the
call site, how often the call site is called, a size of code in
which the call site is located, effects of inlining on a size of the
code, whether inlining would result in a stack overtlow, and
effects of inlining on execution time.

In an aspect, selecting a call site detected during a scan of
the code may include detecting a group of call sites during the
scan of the code, setting the call-site counter equal to a num-
ber of call sites in the group of call sites, ranking the group of
call sites based on a number of nested function calls of each of
the group of call sites, and selecting the call site based on rank
wherein call sites may be selected beginning with a lowest
rank. In another aspect, determining whether the call site is
eligible for inlining may include determining whether a sum
of a net change in the number of call sites and the call-site
counter exceeds a call-site threshold, determining that the call
site is eligible for inlining in response to determining that the
sum does not exceed the call-site threshold, and determining



US 9,304,748 B2

3

that the call site is ineligible for inlining in response to deter-
mining that the sum exceeds the call-site threshold. In another
aspect, the method may include adjusting the call-site counter
by the net change in the number of nested function calls after
inlining the call site. In another aspect, the method may
include determining whether each of the group of call sites
has been selected, selecting an unselected call site in the
group of call sites with a next lowest rank in response to
determining that each of the group of call sites has not been
selected, and ending inline optimization in response to deter-
mining that each of the group of call sites has been selected.

Further aspects include a computing device that may
include a memory and a processor coupled to the memory,
wherein the processor may be configured with processor-
executable instructions to perform operations that include
selecting a call site detected during a scan of code, determin-
ing a number of nested function calls in a called function of
the call site, determining whether the call site is eligible for
inlining based at least on the number of nested function calls
in the called function and a call-site counter, and inlining the
call site in response to determining that the call site is eligible
for inlining. In another aspect, the code may be bytecode. In
another aspect, the processor may be configured with proces-
sor-executable instructions to perform operations such that
determining whether the call site is eligible for inlining
includes determining whether the call site is eligible for inlin-
ing based only on a sum of'the call-site counter and one of the
number of nested function calls and a net change in a number
of call sites.

In another aspect, the processor may be configured with
processor-executable instructions to perform operations that
include adding the number of nested function calls to the
call-site counter after inlining the call site and adding one to
the call-site counter in response to determining that the call
site is ineligible for inlining.

In an aspect, the processor may be configured with proces-
sor-executable instructions to perform operations such that
determining whether the call site is eligible for inlining
includes determining whether a sum of the number of nested
function calls and the call-site counter exceeds a call-site
threshold and determining that the call site is eligible for
inlining in response to determining that the sum does not
exceed the call-site threshold. In another aspect, the processor
may be configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining includes determining whether the
number of nested function calls is greater than one and deter-
mining that the call site is eligible for inlining in response to
determining that the number of nested function calls is not
greater than one. In another aspect, the processor may be
configured with processor-executable instructions to perform
operations such that determining whether the call site is eli-
gible for inlining includes determining whether the call site is
eligible for inlining not based on any of whether the call site
is on an execution path, a depth of nested function calls in the
call site, how often the call site is called, a size of code in
which the call site is located, effects of inlining on a size of the
code, whether inlining would result in a stack overtlow, and
effects of inlining on execution time.

In an aspect, the processor may be configured with proces-
sor-executable instructions to perform operations such that
selecting a call site detected during a scan of the code includes
detecting a group of call sites during the scan of the code,
setting the call-site counter equal to a number of call sites in
the group of call sites, ranking the group of call sites based on
a number of nested function calls of each of the group of call
sites, and selecting the call site based on rank wherein call

10

15

20

25

30

35

40

45

50

55

60

65

4

sites are selected beginning with a lowest rank. In another
aspect, the processor may be configured with processor-ex-
ecutable instructions to perform operations such that deter-
mining whether the call site is eligible for inlining includes
determining whether a sum of a net change in the number of
call sites and the call-site counter exceeds a call-site thresh-
old, determining that the call site is eligible for inlining in
response to determining that the sum does not exceed the
call-site threshold, and determining that the call site is ineli-
gible for inlining in response to determining that the sum
exceeds the call-site threshold. In yet another aspect, the
processor may be configured with processor-executable
instructions to perform operations that include adjusting the
call-site counter by the net change in the number of nested
function calls after inlining the call site. In another aspect, the
processor may be configured with processor-executable
instructions to perform operations that include determining
whether each of the group of call sites has been selected,
selecting an unselected call site in the group of call sites with
anext lowest rank in response to determining that each of the
group of call sites has not been selected, and ending inline
optimization in response to determining that each of the
group of call sites has been selected.

Further aspects may include a computing device including
means for selecting a call site detected during a scan of code,
means for determining a number of nested function calls in a
called function of the call site, means for determining whether
the call siteis eligible for inlining based at least on the number
of nested function calls in the called function and a call-site
counter, and means for inlining the call site in response to
determining that the call site is eligible for inlining. In an
aspect, the code may be bytecode. In another aspect, means
for determining whether the call site is eligible for inlining
may include means for determining whether the call site is
eligible for inlining based only on a sum of the call-site
counter and one of the number of nested function calls and a
net change in a number of call sites.

In an aspect, the computing device may include means for
adding the number of nested function calls to the call-site
counter after inlining the call site and means for adding one to
the call-site counter in response to determining that the call
site is ineligible for inlining.

In an aspect, means for determining whether the call site is
eligible for inlining may include means for determining
whether a sum of the number of nested function calls and the
call-site counter exceeds a call-site threshold and means for
determining that the call site is eligible for inlining in
response to determining that the sum does not exceed the
call-site threshold. In another aspect, means for determining
whether the call site is eligible for inlining may include means
for determining whether the number of nested function calls
is greater than one and means for determining that the call site
is eligible for inlining in response to determining that the
number of nested function calls is not greater than one.

In another aspect, means for determining whether the call
site is eligible for inlining may include means for determining
whether the call site is eligible for inlining not based on any of
whether the call site is on an execution path, a depth of nested
function calls in the call site, how often the call site is called,
a size of code in which the call site is located, effects of
inlining on a size of the code, whether inlining would result in
a stack overflow, and effects of inlining on execution time.

In an aspect, means for selecting a call site detected during
a scan of the code may include means for detecting a group of
call sites during the scan of the code, means for setting the
call-site counter equal to a number of call sites in the group of
call sites, means for ranking the group of call sites based on a



US 9,304,748 B2

5

number of nested function calls of each of the group of call
sites, and means for selecting the call site based on rank
wherein call sites are selected beginning with a lowest rank.
In another aspect, means for determining whether the call site
is eligible for inlining may include means for determining
whether a sum of a net change in the number of call sites and
the call-site counter exceeds a call-site threshold, means for
determining that the call site is eligible for inlining in
response to determining that the sum does not exceed the
call-site threshold, and means for determining that the call
site is ineligible for inlining in response to determining that
the sum exceeds the call-site threshold. In another aspect, the
computing device may include means for adjusting the call-
site counter by the net change in the number of nested func-
tion calls after inlining the call site. In yet another aspect, the
computing device may include means for determining
whether each of the group of call sites has been selected,
means for selecting an unselected call site in the group of call
sites with a next lowest rank in response to determining that
each of the group of call sites has not been selected, and
means for ending inline optimization in response to determin-
ing that each of the group of call sites has been selected.

In further aspects, a non-transitory processor-readable
storage medium may have stored thereon processor-execut-
able software instructions configured to cause a processor to
perform operations for throttling inline optimization of code,
the operations including selecting a call site detected during a
scan of the code, determining a number of nested function
calls in a called function of the call site, determining whether
the call site is eligible for inlining based at least on the number
of nested function calls in the called function and a call-site
counter, and inlining the call site in response to determining
that the call site is eligible for inlining. In another aspect, the
code may be bytecode. In another aspect, the stored proces-
sor-executable software instructions may be configured to
cause a processor of a computing device to perform opera-
tions such that determining whether the call site is eligible for
inlining includes determining whether the call site is eligible
for inlining based only on a sum of the call-site counter and
one of the number of nested function calls and a net change in
a number of call sites.

In another aspect, the stored processor-executable software
instructions may be configured to cause a processor of a
computing device to perform operations including adding the
number of nested function calls to the call-site counter after
inlining the call site and adding one to the call-site counter in
response to determining that the call site is ineligible for
inlining.

In another aspect, the stored processor-executable software
instructions may be configured to cause a processor of a
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining includes deter-
mining whether a sum of the number of nested function calls
and the call-site counter exceeds a call-site threshold and
determining that the call site is eligible for inlining in
response to determining that the sum does not exceed the
call-site threshold. In another aspect, the stored processor-
executable software instructions may be configured to cause
aprocessor of a computing device to perform operations such
that determining whether the call site is eligible for inlining
includes determining whether the number of nested function
calls is greater than one, and determining that the call site is
eligible for inlining in response to determining that the num-
ber of nested function calls is not greater than one. In yet
another aspect, the stored processor-executable software
instructions may be configured to cause a processor of a
computing device to perform operations such that determin-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing whether the call site is eligible for inlining includes deter-
mining whether the call site is eligible for inlining not based
on any of whether the call site is on an execution path, a depth
of nested function calls in the call site, how often the call site
is called, a size of code in which the call site is located, effects
ofiinlining on a size of the code, whether inlining would result
in a stack overflow, and effects of inlining on execution time.

In an aspect, the stored processor-executable software
instructions may be configured to cause a processor of a
computing device to perform operations such that selecting a
call site detected during a scan of the code includes detecting
a group of call sites during the scan of the code, setting the
call-site counter equal to a number of call sites in the group of
call sites, ranking the group of call sites based on a number of
nested function calls of each of the group of call sites, and
selecting the call site based on rank wherein call sites are
selected beginning with a lowest rank. In another aspect, the
stored processor-executable software instructions may be
configured to cause a processor of a computing device to
perform operations such that determining whether the call
site is eligible for inlining includes determining whether a
sum of'a net change in the number of call sites and the call-site
counter exceeds a call-site threshold, determining that the call
site is eligible for inlining in response to determining that the
sum does not exceed the call-site threshold, and determining
that the call site is ineligible for inlining in response to deter-
mining that the sum exceeds the call-site threshold. In another
aspect, the stored processor-executable software instructions
may be configured to cause a processor of a computing device
to perform operations including adjusting the call-site
counter by the net change in the number of nested function
calls after inlining the call site. In yet another aspect, the
stored processor-executable software instructions may be
configured to cause a processor of a computing device to
perform operations including determining whether each of
the group of call sites has been selected, selecting an unse-
lected call site in the group of call sites with a next lowest rank
in response to determining that each of the group of call sites
has not been selected, and ending inline optimization in
response to determining that each of'the group of call sites has
been selected.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and constitute part of this specification, illustrate
exemplary aspects of the invention, and together with the
general description given above and the detailed description
given below, serve to explain the features of the invention.

FIG. 1 is a system block diagram of a typical computing
device suitable for use with the various aspects.

FIG. 2 is a process flow diagram illustrating a typical
method for compiling source code.

FIG. 3 is an illustration of a segment of code before and
after inline expansion.

FIG. 4 is a process flow diagram illustrating an aspect
method of throttling inline optimization of code.

FIG. 5 is a process flow diagram illustrating an aspect
method for determining whether a call site is eligible for
inlining.

FIG. 6 is a process flow diagram illustrating an aspect
method for throttling inline optimization of code based on a
ranking of call sites in code being optimized.

FIG. 7 is a block diagram of an example computing device
according to an aspect.



US 9,304,748 B2

7

FIG. 8 is a block diagram of another example computing
device according to an aspect.

DETAILED DESCRIPTION

The various aspects will be described in detail with refer-
ence to the accompanying drawings. Wherever possible, the
same reference numbers will be used throughout the draw-
ings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative
purposes, and are not intended to limit the scope of the inven-
tion or the claims.

The term “computing device” is used herein to refer to any
one or all of personal computers, servers, desktop computers,
cellular telephones, smartphones, personal or mobile multi-
media players, personal data assistants (PDA’s), laptop com-
puters, tablet computers, smartbooks, palm-top computers,
wireless electronic mail receivers, multimedia Internet
enabled cellular telephones, wireless gaming controllers, and
similar electronic devices that include a programmable pro-
cessor and a memory. While the various aspects are particu-
larly useful in mobile computing devices, such as cellular
telephones, which have limited processing power and battery
capacity, the aspects are generally useful in any computing
device that may benefit from reduced compile times and
reduced energy consumption.

As discussed above, current techniques for throttling inlin-
ing to avoid some of the costs of excessive inlining, such as
increased code size, are not designed to achieve an ideal
balance of code optimization and compile time. Generally,
these strategies are implemented on computing devices that
are not dependent on battery power. For such computing
devices, the increase in compile time has little if any impact
on the end user. On the other hand, for mobile computing
devices that utilize contemporary inline throttling techniques,
the end user may be acutely aware of the decrease in battery
life caused by the increased compile times associated with
excessive inlining. Therefore, a user of a computing device,
especially a mobile computing device, may benefit from an
inline throttling algorithm that achieves shorter compile
times, thereby conserving power, without sacrificing code
optimization potential.

The various aspects leverage the novel observation that the
number of call sites in code may directly correlate with the
code’s compile time; in other words, code with fewer call
sites have faster compile times. By inlining enough call sites
in the code to reduce the costs of handling calls while
accounting for the costs of inlining, the various aspects pro-
vide for an effective balance of short compile times and
effective code performance.

In overview, the various aspects provide methods imple-
mented by a compiler operating on a computing device (e.g.,
a smartphone) for performing inline throttling based on the
total projected number of call sites in the code that would
exist after performing inline expansion. The various aspects
enable the compiler to improve the performance of the gen-
erated code by aggressive inlining while managing increases
in compile time, thereby decreasing the power required to
compile the code while increasing performance of the com-
puting device and the overall user experience.

Invarious aspects, the compiler may inline call sites in such
a way as to keep the total number of call sites in the code
below a certain threshold or maximum number (i.e., a call-
site threshold). In an aspect, the call-site threshold may rep-
resent a number of call sites in the code that may enable the
compiler to achieve a desirable or ideal compile time and
code performance. In other words, the compiler may utilize

10

15

20

25

30

35

40

45

50

55

60

65

8

the call-site threshold to balance the costs of inlining (e.g.,
increased compile times) against the benefits of inlining (e.g.,
faster code execution). Thus, in the various aspects, the deter-
mination of whether to inline a call site may hinge on how
inlining a call site affects the total number of call sites in the
code. This determination differs from other criteria used in
convention methods, such as the number of nested function
calls associated with the call site being inlined.

In an aspect, the compiler may scan through the code for
call sites. When the compiler detects a call site while scanning
the code, the compiler may determine whether the detected
call site is eligible for inlining. In an aspect, the compiler may
inline an eligible call site and may increase a current count of
the number of call sites in the code (i.e., a call-site counter) by
the number of nested function calls that are included in the
call site’s called function. When the compiler determines that
the call site is ineligible for inlining, the compiler may con-
tinue scanning through the code without inlining the ineli-
gible call site and may increase the call-site counter by one to
represent the ineligible call site.

In an aspect, the compiler may determine that a detected
call site is eligible for inlining when replacing the call site
with the code body of the call site’s called function (i.e.
inlining the call site) would not increase the number of call
sites in the code beyond the call-site threshold. As further
discussed below, the call site’s called function may itself
include a number of function calls (i.e., nested function calls)
that, if inlined, would contribute to the total number of non-
inlined call sites in the code. In an aspect, upon detecting a
call site, the compiler may calculate the total number of call
sites that would exist in the code after inlining a call site—
represented as the sum of the call-site counter plus the number
ofnested function calls in the call site’s called function—and
may determine whether the call site is eligible for inlining
based on whether that sum exceeds the call-site threshold.

Inanother aspect, a compiler may perform aninitial scan of
the code for calls sites and may rank each of the call sites
based on the number of nested function calls included in each
call site’s called function. For example, call sites with fewer
nested function calls included in their called functions may
have alower rank. In a further aspect, the compiler may select
call sites from lowest to highest rank, may determine whether
the call sites are eligible for inlining (i.e., whether inlining the
call site would result in too many total call sites), and may
inline eligible call sites. In such an aspect, the compiler may
continue inlining call sites from the lowest rank to the highest
rank until the call-site determines that a call site is ineligible
for inlining (i.e., the call-site sum would exceed the call-site
threshold). In that event, the compiler may end inline optimi-
zation because the remaining call sites are each guaranteed to
beineligible for inlining because the remaining call sites have
higher ranks, meaning that the remaining call sites have the
same or more nested function calls than the first call site
determined to be ineligible for inlining.

The various aspects may be implemented within a variety
of computing devices 100, an example of which is illustrated
in FIG. 1. In an aspect, a computing device 100 may include
an operating system 104. The operating system 104 may be a
high-level operating system used to manage and execute vari-
ous software 110 on the computing device 100. The operating
system 104 may also enable various software 110 to access
hardware resources 106, such as memory 112 and a processor
114.

In another aspect, the operating system 104 may host a
compiler 108. The compiler may be one or more software
programs that transforms source code 102 written in one
programming language (i.e., the source language) into



US 9,304,748 B2

9

another programming language (i.e., the target language). For
example, the source code 102 may be a collection of com-
puter instructions typically written using a human-readable
programming language, such as Java®, C++, Perl®,
Python®, etc., and the compiler 108 may transform the
source code 102 into an executable program. In another
aspect, the source code may be in the form of bytecode (i.e.,
code typically compiled by dynamic compilers and usable on
various different platforms). The source code 102 may exist
as one or more files or in a database and may be stored on
various types of storage media (not shown), such as optical
disks or hard-drive disks.

The compiler 108 may access the hardware resources 106
through the operating system 104 to facilitate compiling the
source code 102 into a more useful form. For example, the
compiler 108 may have access to the memory 112 (e.g.,
RAM) and various registers (not shown) and may utilize the
processing capabilities of the processor 114.

FIG. 2 illustrates a conventional method 200 that may be
implemented in a compiler for compiling source code into
executable code. In block 204, the compiler may obtain
source code for compiling. For example, the compiler may
access source code stored on a hard drive included on the
computing device. In another aspect (not shown), the com-
piler may be adynamic compiler or a “just-in-time” compiler,
and the source code may be in the form of bytecode that was
previously generated from other source code.

The compiler may also generate an intermediate represen-
tation of the source code in block 206. For example, the
compiler may perform various operations to prepare the
source code for optimization, such as by checking the code
for proper syntax and semantics, parsing the source code, and
building a corresponding parse tree and symbol table. In
another aspect, the compiler may be a dynamic compiler and
may generate an intermediate representation of bytecode in
preparation of performing various optimizations as further
described below.

In block 208, the compiler may optimize the intermediate
representation. The compiler may implement various optimi-
zation strategies. For example, the compiler may remove
useless or unreachable code, discover and propagate constant
values, relocate computation to a less frequently executed
place (e.g., moving an operation/instruction out of a loop), or
specializing a computation based on the context.

The compiler may also generate executable code from the
optimized intermediate representation in block 210. For
example, the compiler may convert the optimized intermedi-
ate representation to machine code that may be executed by a
processor on the computing device. In other example, the
compiler may convert the optimized intermediate represen-
tation of bytecode into machine language that has been opti-
mized to run on that particular computing device. The com-
piler may also output the executable code in block 212. For
example, the compiler may output the executable code in the
form of an executable application or program.

FIG. 3 illustrates an example segment of code 300 before
and after inline optimization according to an aspect. The
compiler may receive source code that includes high-level,
human-readable code, for example. This code may include
various called functions 302, 314, 316 (i.c., groups of instruc-
tions) that may include function calls. Method/function calls
(i.e., call sites) may cause the flow of operation to pass from
the calling function to the called function and then back to the
calling function after the called function’s operations are
performed.

In an aspect, the compiler may perform inline optimization
on an unoptimized function 302. In an example, the unopti-

5

10

15

20

25

30

40

45

50

55

60

65

10

mized function 302 may square the number nine and print the
result to an output, such as a display or a file stored on a
computing device. Before inlining, the unoptimized function
302 may include call sites 304, 306, which are function calls
to called functions 314, 316, respectively.

Continuing with the above example, the unoptimized func-
tion 302 may initialize the variable “num1” to have a value of
nine. The unoptimized function 302 may also initialize
another variable “num_square” and assign it the value
returned after calling the called function 314 with the variable
“num1” as input (i.e., “square(num1)”). The called function
314 may square “numl1” and return the squared value to the
unoptimized function 302. The unoptimized function 302
may then assign the squared value to the variable “num_
square.”

The unoptimized function 302 may then call called func-
tion 316 at call site 306 and pass the variable “num_square” to
called function 316 as input (i.e., “print_num(num_square)”).
Called function 316 may convert “num_square” to a String
type object by performing another function call at call site 318
to another called function “convert_double_toString,” and
may print the converted string as output. The control flow may
then return to the unoptimized function 302 and resume after
the call site 306.

Each function call made in the unoptimized function 302
may increase compile time because, for example, the vari-
ables and values of the unoptimized function 302 must be
stored in a stack before control passes to a called function, and
the variables and values must be restored from the stack after
operations return to the unoptimized function 302 from the
called function.

The compiler may perform inline optimization of the unop-
timized function 302 to reduce compile time. After the com-
piler performs inline expansion of the call sites 304, 306, the
unoptimized function 302 may resemble optimized function
322. As a part of the inlining process, the compiler may
replace call sites 304, 306 with the code body from called
functions 314, 316, respectively. Thus, after inline optimiza-
tion, the optimized function 322 may not include call sites
304, 306 and instead may contain the code body of called
functions 314, 316. Because called function 316 includes a
call site 318 to another called function (i.e., a nested function
call), optimized function 322 may also include the call site
318 after inlining call site 306.

As illustrated by the optimized function 322, inlining may
change the number of call sites that are included in the code
being optimized. For example, the unoptimized function 302
originally may have two call sites (i.e., call sites 304, 306), but
after inline optimization, the optimized function 322 may
only have one call site (i.e., call site 318). However, in another
example (not shown), if a called function were more compli-
cated and included ten nested function calls, the optimized
function would instead include nine call sites after inline
optimization. In other words, the net change in the number of
call sites included in a function after inline optimization may
equal the number of nested call sites included in called func-
tions minus the number of original call sites being replaced as
a result of inlining.

In various aspects, the compiler may implement inline
throttling to ensure that inline optimization does not result in
too many call sites being included in an optimized method as
a result of inline optimization.

FIG. 4 illustrates an aspect method 400 that may be imple-
mented by a compiler for implementing inline throttling. In
an aspect, the operations of method 400 implement an aspect



US 9,304,748 B2

11

of'the operations of block 208 of method 200 described above
with reference to FIG. 2. The compiler may begin inline
optimization in block 402.

In block 404, the compiler may set a call-site counter. In an
aspect, while scanning the code, the compiler may use the
call-site counter to keep track of how many detected call sites
are in the code.

Inblock 406, the compiler may select code for scanning. In
an aspect, the compiler may scan a portion of source code
(e.g., Java® bytecode) less than the entire source code (e.g.,
unoptimized function 302 as discussed above with reference
to FIG. 3). In such an aspect, the compiler may separately
perform the process on one or more other portions of the
source code. In another aspect, the compiler may scan the
entire source code. In another aspect (not shown), the com-
piler may scan through the code by traversing one or more
control flow graphs formed from the intermediate represen-
tation of the selected code. In a further aspect, the compiler
may scan through the code without forming a program call
graph.

In determination block 408, the compiler may determine
whether a call site is detected in the scanned code. In other
words, the compiler may scan the code until it finds a function
call instruction, such as call sites 304, 306, 318 discussed
above with reference to FIG. 3. When the compiler deter-
mines that a call site has not been detected (i.e., determination
block 408="“No"), the compiler may determine whether there
is more code to scan in determination block 418 and continue
scanning by selecting the next portion of code in block 406
when there is more code to scan (i.e., determination block
418=“Yes”).

When the compiler detects a call site in the selected code
(i.e., determination block 408=“Yes”), the compiler may
select the call site in block 409. In determination block 410,
the compiler may determine whether the selected call site is
eligible for inlining. In an aspect, the compiler may determine
that a call site is eligible for inlining when the costs of inlining
the call site (e.g., increased compile time) would not out-
weigh the benefits of inlining. For example, the compiler may
determine that a call site is ineligible for inlining because
inlining the call site would result in too many total call sites in
the code, thereby slowing overall compile time. The process
of determining whether the called function of the call site is
eligible for inlining is further discussed below with reference
to FIG. 5.

If the compiler determines that the selected call site is
ineligible for inlining (i.e., determination block 410="No”),
the compiler may add one to the call-site counter in block 416.
In this situation the compiler increments the call-site counter
by one because the compiler determined not to inline the call
site. The compiler may then determine whether there is more
code to scan in determination block 418 and continue scan-
ning by selecting the next portion of code in block 406 when
there is more code to scan (i.e., determination block
418=“Yes”).

If the compiler determines that the selected call site is
eligible for inlining (i.e., determination block 410="Yes”),
the compiler may inline the selected call site in block 412. In
an aspect, the compiler may inline the call site by replacing
the call site with the code body of the call site’s called func-
tion. The code body of the call site’s called function may
include zero or a number of nested function calls. The com-
piler may add the number of nested function calls in the
inlined call site’s called function to the call-site counter in
block 414. For instance, the compiler may add zero to the
call-site counter when the called function includes no nested
function calls (e.g., called function 314 as discussed above

10

15

20

25

30

35

40

45

50

55

60

65

12

with reference to FIG. 3) and add one to the call-site counter
for each nested function calls in the called function (e.g.,
called function 316 as discussed above with reference to FIG.
3.

When the inlining is finished the compiler may determine
whether there is more code to scan in determination block 418
and continue scanning by selecting the next portion of code in
block 406 when there is more code to scan (i.e., determination
block 418=Yes”).

When the compiler determines that there is no more code to
scan (i.e., determination block 418=“No”), the compiler may
optionally determine whether to perform inline optimization
again in optional determination block 419. In an aspect, the
compiler may further optimize the code by rescanning the
code and determining whether the call sites in the code—
including any nested function calls introduced into the code
as a result of inline optimization—are eligible for inlining. In
another aspect, the compiler may make the determination of
whether to perform inline optimization again based on vari-
ous factors. In an aspect, the compiler may determine to
perform inline optimization again a certain predetermined
number of times. In another aspect, the compiler may deter-
mine to perform inline optimization again based on how close
the value of the call-site counter is to the call-site threshold
after the last round of inline optimization. In another aspect,
the compiler may determine to perform inline optimization
again when the call-site counter is less than a certain percent-
age of the call-site threshold (i.e., when the current number of
call sites in the code is not close to the call-site threshold). In
another aspect, the compiler may not repeat the process, and
instead perform the various operations of method 400 in a
single scan of the code.

If the compiler determines that it should perform inline
optimization again (i.e., optional determination block
419="“Yes”), the compiler may begin repeating the process of
performing inline optimization by resetting the call-site
counter in block 404. In that event, the process may continue
in a loop until the compiler determines not to perform inline
optimization again (i.e., optional determination block
419="No"), at which point the compiler may end inline opti-
mization in block 420.

FIG. 5illustrates an aspect method 410a that may be imple-
mented by a compiler operating on a computing device for
determining whether a call site is eligible for inlining. The
operations of method 410a implement an aspect of the opera-
tions of determination block 410 of method 400 described
above with reference to FIG. 4. The compiler may begin
performing method 500 after determining that a call site is
detected in the code (i.e., determination block 408=“Yes”).

In block 502, the compiler may determine the number of
nested function calls in the call site’s called function. For
instance, the compiler may scan the called function and deter-
mine that the called function includes zero or more calls to
other methods or functions as described above with reference
to called functions 314, 316 illustrated in FIG. 3.

The compiler may also determine whether the number of
nested function calls in the called function is greater than one
in optional determination block 503. In an aspect, the com-
piler may determine that a call site is eligible for inlining
when the total number of call sites in the code would not
increase (i.e., when there is no positive net change to the
number of call sites in the code) as a result of inlining. For
example, there may be no net change in the number of call
sites when the called function includes only one nested func-
tion call because the nested function call, as part of the called
method’s code body, replaces the call site. In another
example, the total number of call sites may be decreased by



US 9,304,748 B2

13

one (i.e., a net decrease) when the called function includes no
nested function calls for similar reasons. If the number of
nested function calls in the called function does not exceed
one (i.e., optional determination block 503=“No”), the com-
piler may determine that the call site is eligible for inlining in
block 506. In this event, the compiler may inline the call site
in block 412 of method 400 as described above with reference
to FIG. 4.

Ifthe number of nested function calls in the called function
exceeds one (i.e., optional determination block 503="“Yes”),
the compiler may determine whether the sum of the number
ofnested function calls in the called function and the call-site
counter exceeds a call-site threshold in determination block
504. In an aspect, the call-site threshold may be the maximum
number of call sites that may be included in the code being
optimized as described above. Thus, the compiler may deter-
mine whether inlining the call site introduces too many call
sites into the code from the called function, resulting in an
undesirable increase in compile time.

In the various aspects, only the sum of the number of nested
function calls in a call site’s called function and the call-site
counter may be relevant to determining whether a call site is
eligible for inlining. For example, a call site may be eligible
for inlining even though the call site is associated with ten
nested function calls because the call-site counter has a low
enough value such that the sum of the nested function calls
and the call-site counter is less than the call-site threshold. In
another example, a call site may not be eligible for inlining
when the call site is associated with two nested function calls
because the call-site counter has a high value such that the
sum of the nested function calls and the call-site counter
exceeds the call-site threshold.

In an aspect, the determination of whether to inline a par-
ticular call site may not be based on other factors, including
whether the call site is on an execution path, the depth of
nested function calls in the called function of the call site, the
frequency in which the call site may be called, the size of code
in which the call site is located, the effects of inlining on code
size/code bloat, whether inlining would result in a stack over-
flow, and the effects of inlining on execution time and/or
paths.

Returning to FIG. 5, if the compiler determines that the
sum of the nested function calls in the called function and the
call-site counter exceeds the call-site threshold (i.e., determi-
nation block 504="Yes”), the compiler may determine that
the call site is ineligible for inlining in block 508. In this event,
the compiler may add one to the call-site counter in block 416
of method 400 as described above with reference to FIG. 4.

It the compiler determines that the sum of the nested func-
tion calls in the called function and the call-site counter does
not exceed a call-site threshold (i.e., determination block
504="“No”), the compiler may determine that the call site is
eligible for inlining in block 508. In this event, the compiler
may inline the call site in block 412 of method 400 as
described above with reference to FIG. 4.

FIG. 6 illustrates an aspect method 600 that may be imple-
mented by a compiler for implementing throttled inlining
based on a ranking of the call sites in the code. The operations
in blocks 402, 406, 408, 418, 412, 419 and 420 may be
substantially similar to the operations describe above for like
number blocks with reference to FIG. 4. The compiler may
begin inline optimization in block 402 and select code for
scanning in block 406. In determination block 408, the com-
piler may determine whether a call site is detected in the
selected code. In an aspect, the compiler may step through the
selected code and look for an indication of a function call,
such as a jump instruction. If the compiler does not detect a

25

40

45

55

14

call site in the selected code (i.e., determination block
408="“No"), the compiler may determine whether there is
more code to scan in determination block 418.

If the compiler detects a call site in the selected code
segment (i.e., determination block 408="“Yes”), the compiler
may determine the number of nested function calls in the
detected call site’s called function in block 602. In an aspect,
the compiler may scan the code of the called function to
determine how many nested function calls are included in the
called function.

In another aspect (not shown), the compiler may maintain
a list of call sites detected in the scanned code. The list may
include each detected call site and the respective number of
nested function calls in each detected call site’s called func-
tion. In a further aspect, the compiler may add each detected
call site to the list during the compiler’s scan of the code.

The compiler may also determine whether there is more
code to scan in determination block 418. If the compiler
determines that there is more code to scan (i.e., determination
block 418="“Yes”), these process may continue in a loop with
the compiler selecting the next portion code for scanning in
block 406, determining whether there is a call site in the
selected code in determination block 408, and determining
the number of nested functions in the detected call site until
the compiler determines that there is no more code to scan
(i.e., determination block 418="“No"), at which point the rest
of the method 600 may proceed.

Inblock 603, the compiler may set a call-site counter equal
to the number of detected call sites. The call-site counter may
be set at any point, such as after the code scanning or before
code scanning in which case the compiler may keep a count of
the number of detected call sites while the compiler scans
through the code.

In block 604, the compiler may rank the call sites based on
the number of nested function calls in each call site’s called
function. In an aspect, the compiler may assign a higher rank
to a call site that has a called function with a greater number
of nested function calls than to a call site that has a called
function with a fewer number of nested function calls. For
example, a call site with three nested function calls in its
called function may have a higher rank than a call site with
zero nested function calls in its called function. The compiler
may also implement various tie-breaker algorithms to rank
call sites that have called functions with an equal number of
nested function calls.

In a further aspect, the compiler may utilize the list of calls
sites generated while scanning the code to rank the call sites
inblock 604. For instance, the compiler may perform a simple
sorting operation on the call sites based on their associated
number of nested function calls as the call sites are stored in
the list.

In block 606, the compiler may select the lowest-ranked
call site from the group of call sites for inlining. For example,
the compiler may first select a call site with zero nested
function calls in its called function.

The compiler may also optionally determine whether the
number of nested function calls in the selected call site’s
called function is greater than one in optional determination
block 608. In an aspect, the compiler may always determine
that a selected call site is eligible for inlining when the called
function has no more than one nested function call. In this
event, inlining the selected call site will not produce a net gain
in the number of call sites in the code because the call site is
either replaced by one nested function call (resulting in a net
increase of zero) or is replaced by no nested function call
(resulting in a net decrease of one). Ifthe compiler determines
that the number of nested function calls in the selected call



US 9,304,748 B2

15

site’s called function is not greater than one (i.e., optional
determination block 608=No”), the compiler may inline the
selected call site in block 412.

If the compiler determines that the number of nested func-
tion calls in the selected call site’s called function is greater
than one (i.e., optional determination block 608="“Yes”), the
compiler may determine whether the sum of the projected net
change in the number of call sites and the call-site counter
exceeds a call-site threshold in determination block 609. In
other words, the compiler may determine whether the call site
is eligible for inlining (i.e., whether there would be too many
total call sites in the code after inlining) in a manner similar to
that described above with reference to FIG. 5.

In an aspect, the determination of whether to inline a par-
ticular call site may be based solely on whether the sum of the
projected net change in the number of call sites and the
call-site counter exceeds the call-site threshold. In a further
aspect, the determination of whether to inline a particular call
site may not be based on other factors, including whether the
call site is on an execution path, the depth of nested function
calls in the call site, the frequency in which the call site may
be called, the size of the selected code in which the call site is
located, the effects of inlining on code size/code bloat,
whether inlining would result in a stack overtlow, and the
effects of inlining on execution time and/or paths.

If'the compiler determines that the sum of the projected net
change in the number of call sites and the call-site counter
does not exceed the call-site threshold (i.e., determination
block 609="“No"), the compiler may inline the selected call
site in block 412.

The compiler may adjust the call-site counter by the net
change in the number of call sites in block 610. In an aspect,
the call-site counter may continually be adjusted to account
for the change in the number of call sites in the code resulting
from the inlining process. For example, the compiler may
inline a call site with the body of a called function that
includes three nested function calls, which may increase the
total number of call sites in the code to be optimized by two
(i.e., three new call sites minus the one inlined/replaced call
site for a net change of two). In another example, when the
calls site’s called function includes zero nested function calls,
the call-site counter may be decremented since the overall
number of call sites in the code to be optimized will be
decreased by one (i.e., zero new call sites minus one inlined
call site for a net change of minus one).

In determination block 611, the compiler may determine
whether there is an unselected call site in the ranked call sites.
In an aspect, the compiler may have finished inline optimiza-
tion when each ranked call site has been selected for a deter-
mination of whether that call site is eligible for inlining as
discussed above with reference to optional determination
block 608 and determination block 609. If the compiler deter-
mines that there is not another call site to select (i.e., deter-
mination block 611="No”), the compiler may optionally
determine whether to scan the code again in optional deter-
mination block 419.

If the compiler determines that there is another call site to
select (i.e., determination block 611="Yes”), the compiler
may select the call site with the next lowest rank in block 612
and may repeat the processes of inlining code described
above until there is not another call site to select (i.e., deter-
mination block 611="No”).

If the compiler determines that the sum of the number of
function calls in the called function of the selected call site
and the call-site counter exceeds the call-site threshold (i.e.,
determination block 609="Yes”), the compiler may deter-
mine whether to scan the code again in optional determina-

25

30

40

45

16

tion block 419. In an aspect, the compiler may end inline
optimization in block 420 when it determines that the selected
call site is ineligible for inlining because, as the call sites are
ranked in increasing order based on the number of nested
function calls in their respective called functions, any unse-
lected call site is guaranteed to be ineligible for inlining
because the unselected call site has a higher rank than the call
site determined to be ineligible for inlining.

As discussed above with reference to FIG. 4, the compiler
may determine whether to make another pass through the
code to determine whether any of the call sites (including call
sites inlined from called functions) are eligible for inlining in
optional determination block 419. If the compiler determines
to scan the code again (i.e., optional determination block
419=“Yes”), the compiler may repeat the processes of
method 600 by selecting code for scanning in block 406 and
proceeding as described above. When the compiler deter-
mines not to scan the code again (i.e., optional determination
block 419="No”), the compiler may end inline optimization
in block 420.

The various aspects may be implemented in any of a variety
of computing devices, an example of which is illustrated in
FIG. 7. For example, the computing device 700 may include
a processor 702 coupled to internal memory 704. Internal
memory 704 may be volatile or non-volatile memory, and
may also be secure and/or encrypted memory, or unsecure
and/orunencrypted memory, or any combination thereof. The
processor 702 may also be coupled to a touch screen display
706, such as a resistive-sensing touch screen, capacitive-
sensing touch screen infrared sensing touch screen, or the
like. Additionally, the display of the computing device 700
need not have touch screen capability. Additionally, the com-
puting device 700 may have one or more antenna 708 for
sending and receiving electromagnetic radiation that may be
connected to a wireless data link and/or cellular telephone
transceiver 716 coupled to the processor 702. The computing
device 700 may also include physical buttons 712a and 7125
for receiving user inputs. The computing device 700 may also
include a power button 718 for turning the computing device
700 on and off.

The various aspects described above may also be imple-
mented within a variety of computing devices, such as a
laptop computer 800 illustrated in FIG. 8. Many laptop com-
puters include a touchpad touch surface 817 that serves as the
computer’s pointing device, and thus may receive drag,
scroll, and flick gestures similar to those implemented on
mobile computing devices equipped with a touch screen dis-
play and described above. A laptop computer 800 will typi-
cally include a processor 811 coupled to volatile memory 812
and a large capacity nonvolatile memory, such as a disk drive
813 of Flash memory. Additionally, the computer 800 may
have one or more antenna 808 for sending and receiving
electromagnetic radiation that may be connected to a wireless
data link and/or cellular telephone transceiver 816 coupled to
the processor 811. The computer 800 may also include a
floppy disc drive 814 and a compact disc (CD) drive 815
coupled to the processor 811. In a notebook configuration, the
computer housing includes the touchpad 817, the keyboard
818, and the display 819 all coupled to the processor 811.
Other configurations of the computing device may include a
computer mouse or trackball coupled to the processor (e.g.,
via a USB input) as are well known, which may also be use in
conjunction with the various aspects.

The foregoing method descriptions and the process flow
diagrams are provided merely as illustrative examples and are
not intended to require or imply that the steps of the various
aspects must be performed in the order presented. As will be



US 9,304,748 B2

17

appreciated by one of skill in the art the order of steps in the
foregoing aspects may be performed in any order. Words such
as “thereafter,” “then,” “next,” etc. are not intended to limit the
order of the steps; these words are simply used to guide the
reader through the description of the methods. Further, any
reference to claim elements in the singular, for example,
using the articles “a,” “an” or “the” is not to be construed as
limiting the element to the singular.

The various illustrative logical blocks, modules, circuits,
and algorithm steps described in connection with the aspects
disclosed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illus-
trate this interchangeability of hardware and software, vari-
ous illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application
and design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in vary-
ing ways for each particular application, but such implemen-
tation decisions should not be interpreted as causing a depar-
ture from the scope of the present invention.

The hardware used to implement the various illustrative
logics, logical blocks, modules, and circuits described in
connection with the aspects disclosed herein may be imple-
mented or performed with a general purpose processor, a
digital signal processor (DSP), an application specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any com-
bination thereof designed to perform the functions described
herein. A general-purpose processor may be a microproces-
sor, but, in the alternative, the processor may be any conven-
tional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combi-
nation of computing devices, e.g., a combination of a DSP
and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any
other such configuration. Alternatively, some steps or meth-
ods may be performed by circuitry that is specific to a given
function.

In one or more exemplary aspects, the functions described
may be implemented in hardware, software, firmware, or any
combination thereof. If implemented in software, the func-
tions may be stored as one or more instructions or code on a
non-transitory computer-readable storage medium or non-
transitory processor-readable storage medium (i.e., stored
processor-executable software instructions). The steps of a
method or algorithm disclosed herein may be embodied in a
processor-executable software module and may be performed
as processor-executable instructions that may reside on a
non-transitory computer-readable or processor-readable stor-
age medium. Non-transitory computer-readable or proces-
sor-readable storage media may be any storage media that
may be accessed by a computer or a processor. By way of
example but not limitation, such non-transitory computer-
readable or processor-readable storage media may include
RAM, ROM, EEPROM, FLLASH memory, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to
store desired program code in the form of instructions or data
structures and that may be accessed by a computer. Disk and
disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk, and
blu-ray disc where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combina-
tions of the above are also included within the scope of

20

30

35

40

45

55

18

non-transitory computer-readable and processor-readable
media. Additionally, the operations of a method or algorithm
may reside as one or any combination or set of codes and/or
instructions on a non-transitory processor-readable storage
medium and/or computer-readable storage medium, which
may be incorporated into a computer program product.

The preceding description of the disclosed aspects is pro-
vided to enable any person skilled in the art to make or use the
present invention. Various modifications to these aspects will
be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other aspects
without departing from the spirit or scope of the invention.
Thus, the present invention is not intended to be limited to the
aspects shown herein but is to be accorded the widest scope
consistent with the following claims and the principles and
novel features disclosed herein.

What is claimed is:

1. A method of optimizing inline code generation by a
compiler operating on a computing device, comprising:

selecting a call site detected during a scan of code, com-

prising:
detecting a group of call sites during the scan of the code;
setting a call-site counter equal to a number of call sites
in the group of call sites;
ranking the group of call sites based on a number of
nested function calls included in a function called by
each of the group of call sites; and
selecting the call site based on rank, wherein call sites
are selected beginning with a lowest rank;
determining a number of nested function calls included in
a called function of the call site;
determining whether the call site is eligible for inlining
based at least on the number of nested function calls
included in the called function and the call-site counter
indicating a total number of calls to any function cur-
rently included within the code; and

inlining the call site in response to determining that the call

site is eligible for inlining.

2. The method of claim 1, wherein the code is bytecode.

3. The method of claim 1, wherein determining whether the
call site is eligible for inlining is based only on a sum of the
call-site counter and one of the number of nested function
calls and a net change in a number of call sites.

4. The method of claim 1, further comprising:

adding the number of nested function calls to the call-site

counter after inlining the call site; and

adding one to the call-site counter in response to determin-

ing that the call site is ineligible for inlining.

5. The method of claim 1, wherein determining whether the
call site is eligible for inlining comprises:

determining whether a sum of the number of nested func-

tion calls and the call-site counter exceeds a call-site
threshold; and

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold.

6. The method of claim 1, wherein determining whether the
call site is eligible for inlining comprises:

determining whether the number of nested function calls is

greater than one; and

determining that the call site is eligible for inlining in

response to determining that the number of nested func-
tion calls is not greater than one.

7. The method of claim 1, wherein determining whether the
call site is eligible for inlining is not based on any of whether
the call site is on an execution path, a depth of nested function
calls in the call site, how often the call site is called, a size of



US 9,304,748 B2

19

code in which the call site is located, effects of inlining on a
size of the code, whether inlining would result in a stack
overflow, and effects of inlining on execution time.

8. The method of claim 1, wherein determining whether the
call site is eligible for inlining comprises:

determining whether a sum of a net change in the number

of call sites and the call-site counter exceeds a call-site
threshold;

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold; and

determining that the call site is ineligible for inlining in

response to determining that the sum exceeds the call-
site threshold.

9. The method of claim 8, further comprising adjusting the
call-site counter by the net change in the number of nested
function calls after inlining the call site.

10. The method of claim 1, further comprising:

determining whether each of the group of call sites has

been selected;
selecting an unselected call site in the group of call sites
with a next lowest rank in response to determining that
each ofthe group of call sites has not been selected; and

ending inline optimization in response to determining that
each of the group of call sites has been selected.

11. A computing device, comprising:

a memory; and

aprocessor coupled to the memory, wherein the processor

is configured with processor-executable instructions to
perform operations of an on-device compiler configured
to optimize inline code generation, the operations com-
prising:
selecting a call site detected during a scan of code,
comprising:
detecting a group of call sites during the scan of the
code:
setting a call-site counter equal to a number of call
sites in the group of call sites;
ranking the group of call sites based on a number of
nested function calls included in a function called
by each of the group of call sites; and
selecting the call site based on rank, wherein call sites
are selected beginning with a lowest rank;
determining a number of nested function calls included
in a called function of the call site;
determining whether the call site is eligible for inlining
based at least on the number of nested function calls
included in the called function and the call-site
counter indicating a total number of calls to any func-
tion currently included within the code; and
inlining the call site in response to determining that the
call site is eligible for inlining.

12. The computing device of claim 11, wherein the code is
bytecode.

13. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining comprises determining whether the
call site is eligible for inlining based only on a sum of the
call-site counter and one of the number of nested function
calls and a net change in a number of call sites.

14. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations further comprising:

adding the number of nested function calls to the call-site

counter after inlining the call site; and

5

20

25

30

40

45

50

60

65

20

adding one to the call-site counter in response to determin-

ing that the call site is ineligible for inlining.

15. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining comprises:

determining whether a sum of the number of nested func-

tion calls and the call-site counter exceeds a call-site
threshold; and

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold.

16. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining comprises:

determining whether the number of nested function calls is

greater than one; and

determining that the call site is eligible for inlining in

response to determining that the number of nested func-
tion calls is not greater than one.

17. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining comprises determining whether the
call site is eligible for inlining not based on any of whether the
call site is on an execution path, a depth of nested function
calls in the call site, how often the call site is called, a size of
code in which the call site is located, effects of inlining on a
size of the code, whether inlining would result in a stack
overflow, and effects of inlining on execution time.

18. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that determining whether the call
site is eligible for inlining comprises:

determining whether a sum of a net change in the number

of call sites and the call-site counter exceeds a call-site
threshold;

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold; and

determining that the call site is ineligible for inlining in

response to determining that the sum exceeds the call-
site threshold.

19. The computing device of claim 18, wherein the proces-
sor is configured with processor-executable instructions to
perform operations further comprising adjusting the call-site
counter by the net change in the number of nested function
calls after inlining the call site.

20. The computing device of claim 11, wherein the proces-
sor is configured with processor-executable instructions to
perform operations further comprising:

determining whether each of the group of call sites has

been selected;
selecting an unselected call site in the group of call sites
with a next lowest rank in response to determining that
each of the group of call sites has not been selected; and

ending inline optimization in response to determining that
each of the group of call sites has been selected.

21. A computing device, comprising:

means for selecting a call site detected during a scan of

code, comprising:

means for detecting a group of call sites during the scan
of the code;

means for setting a call-site counter equal to a number of
call sites in the group of call sites;



US 9,304,748 B2

21

means for ranking the group of call sites based on a
number of nested function calls included in a function
called by each of the group of call sites; and

means for selecting the call site based on rank, wherein
call sites are selected beginning with a lowest rank;

means for determining a number of nested function calls

included in a called function of the call site;

means for determining whether the call site is eligible for

inlining based at least on the number of nested function

calls included in the called function and the call-site
counter indicating a total number of calls to any function
currently included within the code; and

means for inlining the call site in response to determining

that the call site is eligible for inlining.

22. The computing device of claim 21, wherein the code is
bytecode.

23. The computing device of claim 21, wherein means for
determining whether the call site is eligible for inlining com-
prises means for determining whether the call site is eligible
for inlining based only on a sum of the call-site counter and
one of the number of nested function calls and a net change in
a number of call sites.

24. The computing device of claim 21, further comprising:

means for adding the number of nested function calls to the

call-site counter after inlining the call site; and

means for adding one to the call-site counter in response to

determining that the call site is ineligible for inlining.

25. The computing device of claim 21, wherein means for
determining whether the call site is eligible for inlining com-
prises:

means for determining whether a sum of the number of

nested function calls and the call-site counter exceeds a

call-site threshold; and

means for determining that the call site is eligible for inlin-

ing in response to determining that the sum does not

exceed the call-site threshold.

26. The computing device of claim 21, wherein means for
determining whether the call site is eligible for inlining com-
prises:

means for determining whether the number of nested func-

tion calls is greater than one; and

means for determining that the call site is eligible for inlin-

ing in response to determining that the number of nested

function calls is not greater than one.

27. The computing device of claim 21, wherein means for
determining whether the call site is eligible for inlining com-
prises means for determining whether the call site is eligible
for inlining not based on any of whether the call site is on an
execution path, a depth of nested function calls in the call site,
how often the call site is called, a size of code in which the call
site is located, effects of inlining on a size of the code, whether
inlining would result in a stack overflow, and effects of inlin-
ing on execution time.

28. The computing device of claim 21, wherein means for
determining whether the call site is eligible for inlining com-
prises:

means for determining whether a sum of a net change in the

number of call sites and the call-site counter exceeds a

call-site threshold;

means for determining that the call site is eligible for inlin-

ing in response to determining that the sum does not

exceed the call-site threshold; and

means for determining that the call site is ineligible for

inlining in response to determining that the sum exceeds

the call-site threshold.

10

—

5

30

35

40

45

55

65

22

29. The computing device of claim 28, further comprising
means for adjusting the call-site counter by the net change in
the number of nested function calls after inlining the call site.

30. The computing device of claim 21, further comprising:

means for determining whether each of the group of call

sites has been selected;

means for selecting an unselected call site in the group of

call sites with a next lowest rank in response to deter-
mining that each of the group of call sites has not been
selected; and

means for ending inline optimization in response to deter-

mining that each of the group of call sites has been
selected.

31. A non-transitory processor-readable storage medium
having stored thereon processor-executable software instruc-
tions configured to cause a processor of a computing device to
perform operations of a compiler configured to optimize
inline code generation, the operations comprising:

selecting a call site detected during a scan of code, com-

prising:
detecting a group of call sites during the scan of the code;
setting a call-site counter equal to a number of call sites
in the group of call sites;
ranking the group of call sites based on a number of
nested function calls included in a function called by
each of the group of call sites; and
selecting the call site based on rank, wherein call sites
are selected beginning with a lowest rank;
determining a number of nested function calls included in
a called function of the call site;
determining whether the call site is eligible for inlining
based at least on the number of nested function calls
included in the called function and the call-site counter
indicating a total number of calls to any function cur-
rently included within the code; and

inlining the call site in response to determining that the call

site is eligible for inlining.

32. The non-transitory processor-readable storage medium
of claim 31, wherein the code is bytecode.

33. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining comprises
determining whether the call site is eligible for inlining based
only on a sum of the call-site counter and one of the number
of nested function calls and a net change in a number of call
sites.

34. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations further comprising:

adding the number of nested function calls to the call-site

counter after inlining the call site; and

adding one to the call-site counter in response to determin-

ing that the call site is ineligible for inlining.

35. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining comprises:

determining whether a sum of the number of nested func-

tion calls and the call-site counter exceeds a call-site
threshold; and

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold.



US 9,304,748 B2

23

36. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining comprises:

determining whether the number of nested function calls is

greater than one; and

determining that the call site is eligible for inlining in

response to determining that the number of nested func-
tion calls is not greater than one.

37. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining comprises
determining whether the call site is eligible for inlining not
based on any of whether the call site is on an execution path,
a depth of nested function calls in the call site, how often the
call site is called, a size of code in which the call site is
located, effects of inlining on a size of the code, whether
inlining would result in a stack overflow, and effects of inlin-
ing on execution time.

38. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations such that determin-
ing whether the call site is eligible for inlining comprises:

5

10

15

20

25

24

determining whether a sum of a net change in the number
of call sites and the call-site counter exceeds a call-site
threshold;

determining that the call site is eligible for inlining in

response to determining that the sum does not exceed the
call-site threshold; and

determining that the call site is ineligible for inlining in

response to determining that the sum exceeds the call-
site threshold.

39. The non-transitory processor-readable storage medium
of claim 38, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations further comprising
adjusting the call-site counter by the net change in the number
of nested function calls after inlining the call site.

40. The non-transitory processor-readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware instructions are configured to cause the processor of the
computing device to perform operations further comprising:

determining whether each of the group of call sites has

been selected;
selecting an unselected call site in the group of call sites
with a next lowest rank in response to determining that
each of the group of call sites has not been selected; and

ending inline optimization in response to determining that
each of the group of call sites has been selected.

#* #* #* #* #*



